A large surgery formula for instanton Floer homology

Fan Ye

University of Cambridge

Joint work with Zhenkun Li

Knot Floer chain complex $CFK^{\infty} \rightsquigarrow$ Heegaard Floer homology $\widehat{HF}(S^3_m(K))$.

Instanton knot homology KHI but no differentials \rightsquigarrow calculate $I^{\sharp}(S_m^3(K))$?

My work:

- **(**) Construct d_+ and d_- on KHI analogous to d_w and d_z on CFK^{∞} ;
- **2** Use d_+ and d_- to calculate $I^{\sharp}(S^3_m(K))$ for large integer m.

Conjecture (Kronheimer-Mrowka): $KHI(K) \cong \widehat{HFK}(K), I^{\sharp}(Y) \cong \widehat{HF}(Y).$

Fact (Baldwin-Sivek): dim $I^{\sharp}(Y) > |H_1(Y;\mathbb{Z})|$ implies the existence of irreducible SU(2) representations of $\pi_1(Y)$.

1 Quick reviews of instanton and Heegaard Floer homology

2 Large surgery formula for Heegaard Floer homology

3 Main theorems

4 Analogous constructions in instanton and Heegaard Floer theory

Suppose Y is a closed 3-manifold and $\omega \to Y$ is a Hermitian line bundle with some admissible conditions. Based on Yang-Mills equations (related to SO(3) connections), Floer '88 constructed **instanton Floer homology** $I^{\omega}(Y)$.

Suppose (M, γ) is a balanced sutured manifold, where M is a 3-manifold with boundary and $\gamma \subset \partial M$ is a 1-submanifold with some balanced conditions. Kronheimer-Mrowka '10 constructed **sutured instanton homology** $SHI(M, \gamma)$. Suppose Y is a closed 3-manifold. Based on Heegaard diagrams and symplectic geometry, Ozsváth-Szabó '04 constructed **Heegaard Floer homology** $\widehat{HF}(Y), HF^{\infty}(Y), HF^+(Y), HF^-(Y).$

Suppose $K \subset Y$ is a knot. Ozsváth-Szabó '04 and Rasmussen '03 constructed knot Floer homology $HFK^{\circ}(Y, K)$ for $\circ \in \{\uparrow, \infty, +, -\}$.

Suppose (M, γ) is a balanced sutured manifold. Juhász '06 constructed sutured Floer homology $SFH(M, \gamma)$.

Setup	Manifold	Suture	Heegaard Floer	instanton
Sutured manifold	M	γ	SFH	SHI
$Knot\ K \subset Y$	Yackslash N(K)	Two meridians γ_K	\widehat{HFK}	KHI
Closed 3-manifold Y	$Yackslash B^3$	Connected curve δ	\widehat{HF}	I^{\sharp}

Conjecture (Kronheimer-Mrowka '10)

$$\begin{split} SHI(M,\gamma) &\cong SFH(M,\gamma).\\ \text{In particular, } KHI(Y,K) &\cong \widehat{HFK}(Y,K) \text{ and } I^{\sharp}(Y) &\cong \widehat{HF}(Y). \end{split}$$

Examples

 $KHI(Y,K)\cong \widehat{HFK}(Y,K)$ holds for

- alternating links in S^3 (Kronheimer-Mrowka '11)
- all torus knots (Li-Y. '20 and Baldwin-Li-Y. '20, some partial results by Lobb-Zentner '13, Kronheimer-Mrowka '14, Hedden-Herald-Kirk '14, Daemi-Scaduto '19, *et al.*)
- all (1,1)-L-space knots and all constrained knots in lens spaces (Li-Y. '21).

Conjecture (Kronheimer-Mrowka '10)

$$\begin{split} SHI(M,\gamma) &\cong SFH(M,\gamma).\\ \text{In particular, } KHI(Y,K) &\cong \widehat{HFK}(Y,K) \text{ and } I^{\sharp}(Y) &\cong \widehat{HF}(Y). \end{split}$$

Examples

 $I^{\sharp}(Y) \cong \widehat{HF}(Y)$ holds for

- $\Sigma_2(S^3, L)$ for any alternating link L (Scaduto '15);
- $S_r^3(K)$ for any knot K admitting lens space surgeries. (Lidman-Pinzón-Scaduto '20, Baldwin-Sivek '20);
- Seifert fibered rational homology spheres (Alfieri-Baldwin-Dai-Sivek '20);
- Strong Heegaard Floer L-spaces, i.e. $\dim \widehat{HF}(Y) = \dim \widehat{CF}(Y) = |H_1(Y;\mathbb{Z})|$ (Baldwin-Li-Y. '20).

Quick reviews of instanton and Heegaard Floer homology

2 Large surgery formula for Heegaard Floer homology

3 Main theorems

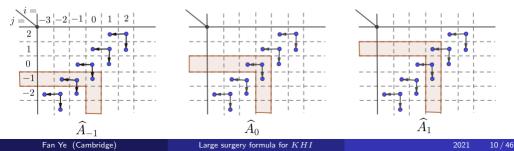
4 Analogous constructions in instanton and Heegaard Floer theory

Large surgery formula for Heegaard Floer homology

The hat version of the **bent complex** in Heegaard Floer theory: For a knot $K \subset S^3$, choose a doubly-pointed Heegaard diagram $(\Sigma, \alpha, \beta, z, w)$. Let $CFK^{\infty}(Y, K)$ be generated by $[x, i, j] \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta} \times \mathbb{Z} \times \mathbb{Z}$ with the Alexander grading A(x) = j - i and let the differential be

$$\partial[x,i,j] = \sum_{y \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}} \sum_{\{\phi \in \pi_2(x,y) | \mu(\phi) = 1\}} \#\widehat{\mathcal{M}}(\phi) \cdot [y,i-n_w(\phi),j-n_z(\phi)].$$

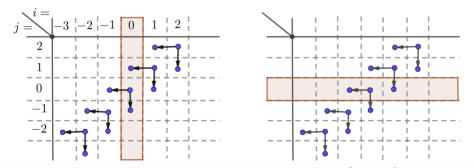
Let \widehat{A}_s be the subcomplex generated by [x, i, j] with $\max\{i, j - s\} = 0$.



Large surgery formula for Heegaard Floer homology

Since $(\widehat{CF}(S^3), d_z) = \{i = 0\}, (\widehat{CF}(S^3), d_w) = \{j = 0\}$, let \widehat{A}_s be generated by $x \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$ and let the differential d_s be

$$d_s(x) = \begin{cases} d_w(x) & A(x) > s, \\ d_w(x) + d_z(x) & A(x) = s, \\ d_z(x) & A(x) < s, \end{cases}$$



Fan Ye (Cambridge)

Theorem (large surgery formula, Oszváth-Szabó '04, Rasmussen '03)

For integer m >> 0 and any integer s with $|s| \leq m/2$, there is an isomorphism

 $\widehat{HF}(S_m^3(K), [s]) \cong H(\widehat{A}_s).$

Here $[s] \in \mathbb{Z}/m$ is the corresponding spin^c structure on $S_m^3(K)$.

Remark

The subcomplex A_s^+ generated by [x,i,j] with $\max\{i,j-s\} \ge 0$ computes $HF^+(S^3_m(K),[s]).$

Quick reviews of instanton and Heegaard Floer homology

2 Large surgery formula for Heegaard Floer homology

3 Main theorems

4 Analogous constructions in instanton and Heegaard Floer theory

De

Theorem A (large surgery formula, Li-Y. '21)

There exist differentials d_+ and d_- on $KHI(-S^3,K)$ so that

$$H(KHI(-S^{3}, K), d_{+}) \cong H(KHI(-S^{3}, K), d_{-}) \cong I^{\sharp}(-S^{3}).$$
fine $A_{s} = (KHI(-S^{3}, K), d_{s})$, where $d_{s}(x) = \begin{cases} d_{w} & A(x) > s, \\ d_{+}(x) & A(x) > s, \\ d_{+}(x) + d_{-}(x) & A(x) = s, \\ d_{-}(x) & A(x) < s, \end{cases}$
is $m \gg 0$ and any s with $|s| \le m/2$, there is an isomorphism

For m>>0 and any s with $|s|\leqslant m/2$, there is an isomorphism

$$I^{\sharp}(-S^{3}_{-m}(K), [-s]) \cong H(A_{s}).$$

Here $I^{\sharp}(-S^3_{-m}(K)) = \bigoplus_{k=1}^{m} I^{\sharp}(-S^3_{-m}(K), [k])$ is a spin^c-like decomposition. *The minus sign comes from contact gluing maps (bypass maps).

Main theorems

$\frac{1}{1} \operatorname{ceQ} \operatorname{dim} \mathcal{I}^{\#}(S^{3}(K)) = /H_{I}(S^{3}(K))$ Theorem B (Li-Y. '21)

If $K \subset S^3$ is an **instanton L-space knot**, then $\dim_{\mathbb{C}} KHI(S^3, K, i) \in \{0, 1\}$, where the $\mathbb{Z}/2$ -gradings of the generators of $KHI(S^3, K, i) \cong \mathbb{C}$ are alternating. Hence there exists $k \in \mathbb{N}_+$ and integers $n_k > n_{k-1} > \cdots > n_1 > n_0 = 0$ so that

$$\Delta_K(t) = (-1)^k + \sum_{j=1}^{n_k-1} (-1)^{k-j} (t^{n_j} + t^{-n_j})$$

(from $\chi(KHI(K)) = \pm \Delta_K(t)$ by Lim '09, Kronheimer-Mrowka '10).

Remark

Oszváth-Szabó '05 proved an analogous result for Heegaard Floer theory. The proof of Theorem B is inspired by their proof.

Main theorems

If K is not an instanton L-space knot, then $\pi_1(S_r^3(K))$ has an irreducible SU(2) representation for

- all but finitely many slopes $r \in \mathbb{Q} \setminus \{0\}$ (Sivek-Zentner '20);
- **2** r = p/q with p a prime power (Baldwin-Sivek '19).

Corollary A (Li-Y. '21)

The following knots are not instanton L-space knots.

- Hyperbolic alternating knots (by Oszváth-Szabó '05);
- Omotopic Montesinos knots (including all pretzel knots), except torus knots T(2, 2n + 1), pretzel knots P(-2, 3, 2n + 1) for $n \in \mathbb{N}_+$ and their mirrors (by Baker-Moore '18).
- So Knots that are closures of 3-braids, except twisted torus knots K(3,q;2,p) with pq > 0 and their mirrors (by Lee-Vafaee '21).

Theorem C (Baldwin-Li-Sivek-Y. 21)

For any nontrivial knot $K\subset S^3,$ the group of the 3-surgery $\pi_1(S^3_3(K))$ has an irreducible SU(2) representation.

Remark

Kronheimer-Mrowka '04 proved the existence of representation for slope in [0, 2]. Baldwin-Sivek '19 proved it for slope 4 and $p/q \in (2, 3)$ with p a prime power. Theorem C is generalized to slope $p/q \in [16/5, 80/23) \cup (4, 5)$ with p an odd prime power and gcd(p, 5) = 1.

Theorem D (Li-Y. in preparation)

For any integer n, $I^{\sharp}(S_n^3(K))$ can be calculated by d_+ and d_- on $KHI(-S^3, K)$ analogous to Oszváth-Szabó's mapping cone formula for $\widehat{HF}(S_n^3(K))$.

Quick reviews of instanton and Heegaard Floer homology

2 Large surgery formula for Heegaard Floer homology

3 Main theorems

Analogous constructions in instanton and Heegaard Floer theory

Analogous constructions in instanton and Heegaard Floer theory

Construction	Heegaard Floer	Instanton
Homology	SFH, HFK, HF	SHI, KHI, I [#] (Y)
Homological grading	Maslov grading	Relative $\mathbb{Z}/2$ -grading
\mathbb{Z} -grading for surface S (Alexander grading)	$\langle c_1(\mathfrak{s}), [S] angle / 2$ for spin c structure \mathfrak{s}	eigenspaces of $\mu(S)$ Li '19, Ghosh-Li '19
Surgery exact triangle	Oszváth-Szabó '04	Floer '90, Scaduto '15

Proposition A (surgery exact triangle, Floer '90, Scaduto '15)

Suppose K is a knot in the interior of M. Let (M_i, γ_i) be obtained from (M, γ) by Dehn surgery along K with slope μ_i . If

$$\mu_1 \cdot \mu_2 = \mu_2 \cdot \mu_3 = \mu_3 \cdot \mu_1 = -1,$$

then there exists a long exact sequence

 $SHI(M_1, \gamma_1) \to SHI(M_2, \gamma_2) \to SHI(M_3, \gamma_3) \to SHI(M_1, \gamma_1)$

Analogous constructions in instanton and Heegaard Floer theory

Let $K \subset S^3$ be a knot and let M be the knot complement. Suppose μ and λ are the meridian and the longidue of K. Let $\Gamma_n \subset \partial M$ be the suture consisting of two curves of slope -n (i.e. $-n\mu + \lambda$). Push μ into $\operatorname{int} M$ to obtain μ' , with the framing induced by ∂M .

Proposition A1 (Li-Y. 20)

The
$$(\infty, 0, 1)$$
-surgery triangle on $\mu' \subset (-M, -\Gamma_n)$ induces

$$SHI(-M,-\Gamma_{n-1}) \to SHI(-M,-\Gamma_n) \to I^{\sharp}(-S^3) \to SHI(-M,-\Gamma_{n-1})$$

(Note that $I^{\sharp}(-S^3) \cong KHI(-S^3, \text{Unknot})$) In general, let $(\hat{\mu}, \hat{\lambda}) = (\lambda - m\mu, -\mu)$ and let $\hat{\Gamma}_n$ be the suture consisting of two curves of $-n\hat{\mu} + \hat{\lambda}$. Then $(\infty, 0, 1)$ -surgery triangle on $\hat{\mu}' \subset (-M, -\hat{\Gamma}_n)$ induces

$$SHI(-M, -\widehat{\Gamma}_{n-1}) \to SHI(-M, -\widehat{\Gamma}_n) \to I^{\sharp}(-S^3_{-m}(K)) \to SHI(-M, -\widehat{\Gamma}_{n-1})$$

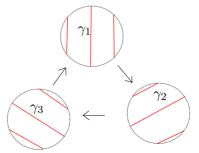
Construction	Heegaard Floer	Instanton	
Homology	$SFH, \widehat{HFK}, \widehat{HF}$	SHI, KHI, I^{\sharp}	
Homological grading	Maslov grading	Relative $\mathbb{Z}/2$ -grading	
\mathbb{Z} -grading for surface S (Alexander grading)	$\langle c_1(\mathfrak{s}), [S] angle / 2$ for spin c structure \mathfrak{s}	eigenspaces of $\mu(S)$ Li '19, Ghosh-Li '19	
Surgery exact triangle	Oszváth-Szabó '04	Floer '90, Scaduto '15	
Bypass exact triangle	Honda '00, Etnyre-Vela-Vick-Zarev '17	Baldwin-Sivek '18	

Analogous constructions in instanton and Heegaard Floer theory

Proposition B (bypass exact triangle, Baldwin-Sivek '18)

Suppose $\gamma_1, \gamma_2, \gamma_3$ are three sutures on M such that γ_i are the same except in a disk, where they look like as follows. Then there exists a long exact sequence

$$SHI(-M, -\gamma_1) \rightarrow SHI(-M, -\gamma_2) \rightarrow SHI(-M, -\gamma_3) \rightarrow SHI(-M, -\gamma_1)$$



Proposition B1 (Li-Y. 20)

Let $M = S^3 \setminus N(K)$ and let Γ_μ and Γ_n be the sutures of slopes μ and $-n\mu + \lambda$. Then there are two bypass exact triangles

$$\rightarrow SHI(-M,-\Gamma_{n-1}) \xrightarrow{\psi_{+,n}^{n-1}} SHI(-M,-\Gamma_n) \xrightarrow{\psi_{+,\mu}^n} SHI(-M,-\Gamma_\mu) \xrightarrow{\psi_{+,n-1}^{\mu}} SH$$

$$\rightarrow SHI(-M,-\Gamma_{n-1}) \xrightarrow{\psi_{-,n}^{n-1}} SHI(-M,-\Gamma_n) \xrightarrow{\psi_{-,\mu}^n} SHI(-M,-\Gamma_\mu) \xrightarrow{\psi_{-,n-1}^\mu}$$

Moreover, the bypass maps are homogeneous with respect to the Alexander gradings. Similarly, we can replace $\Gamma_{n-1}, \Gamma_n, \Gamma_\mu$ by $\widehat{\Gamma}_{n-1}, \widehat{\Gamma}_n, \widehat{\Gamma}_\mu$.

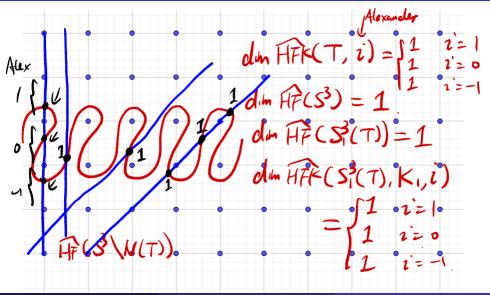
Construction	Heegaard Floer	Instanton
Homology	$SFH, \widehat{HFK}, \widehat{HF}$	SHI, KHI, I^{\sharp}
Homological grading	Maslov grading	Relative $\mathbb{Z}/2$ -grading
\mathbb{Z} -grading for surface S (Alexander grading)	$\langle c_1(\mathfrak{s}), [S] angle / 2$ for spin c structure \mathfrak{s}	eigenspaces of $\mu(S)$ Li '19, Ghosh-Li '19
Surgery exact triangle	Oszváth-Szabó '04	Floer '90, Scaduto '15
Bypass exact triangle	Honda '00, Etnyre-Vela-Vick-Zarev '17	Baldwin-Sivek '18
Immersed curve invariants	Hanselman-Rasmussen- Watson '16 '18	???

Suppose M is a 3-manifold with torus boundary. Based on Bordered Floer homology (Lipshitz-Oszváth-Thurston '08), Hanselman-Rasmussen-Watson '16 constructed a set of immersed curves in $\partial M \setminus \text{pt.}$

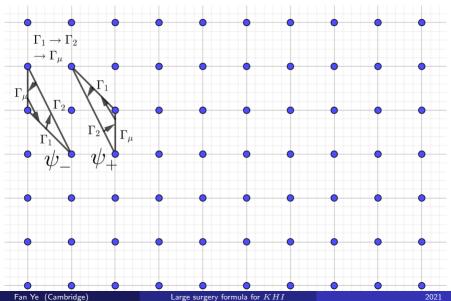
It is denoted by $\widehat{HF}(M)$ and can be regarded as an object in some Fukaya category of $\partial M \setminus \text{pt.}$ If $Y = M_1 \cup_{T^2} M_2$, then

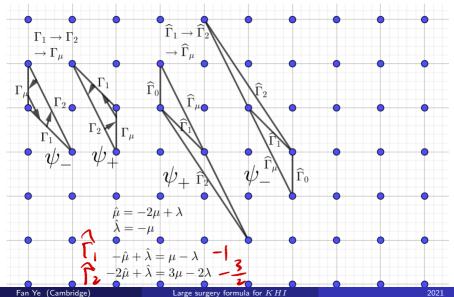
 $\dim \widehat{HF}(Y) = \dim HF_{symp}(\widehat{HF}(M_1), \widehat{HF}(M_2)) = |\widehat{HF}(M_1) \cap \widehat{HF}(M_2)|.$

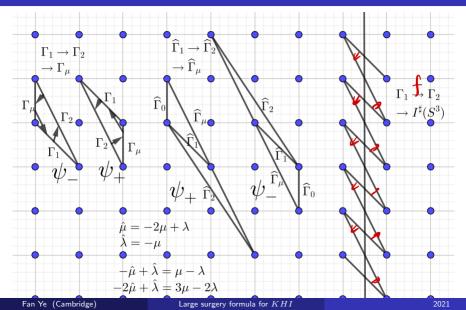
In particular, when $M = S^3 \setminus N(K)$, we can recover $\widehat{HF}(S_r^3(K))$ and $\widehat{HFK}(S_r^3(K), K_r)$ as follows, where K_r is the dual knot.



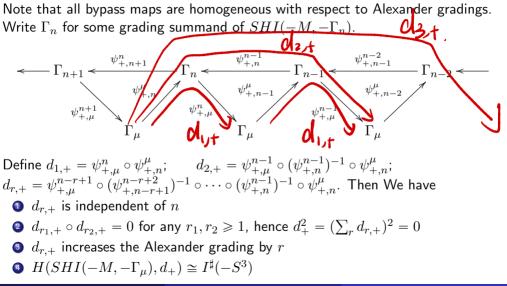
Fan Ye (Cambridge)

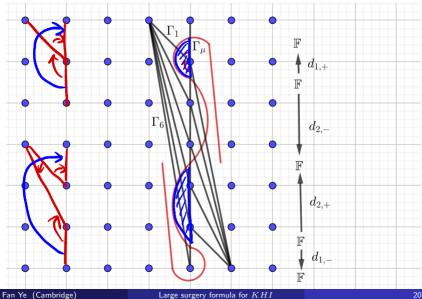






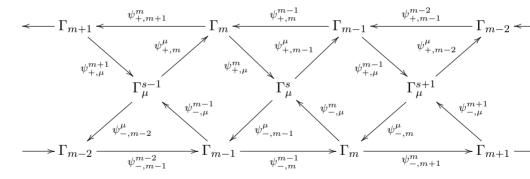
Analogous constructions in instanton and Heegaard Floer theory





Analogous constructions in instanton and Heegaard Floer theory

Indeed, we have two spectral sequences associated to $d_{r,+}$ and $d_{r,-}$. Set n = m. Then we can construct A_s as follows.



Step 1. Suppose m >> 0 and $\hat{\mu} = -m\mu + \lambda$. Then the slope of $\widehat{\Gamma}_2$

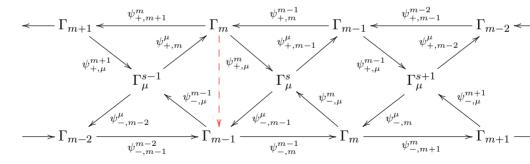
$$-2\hat{\mu}+\hat{\lambda}=-2(-m\mu+\lambda)+(-\mu)=(2m-1)\mu-2\lambda$$

is large enough so that we can use 'middle Alexander gradings' of $SHI(-M, -\widehat{\Gamma}_2)$ to recover the information of $I^{\sharp}(-S^3_{-m}(K), [s])$.

Sketch of the proof of the large surgery formula

Step 2. The bypass exact triangle induces a long exact sequence

$$\rightarrow SHI(-M,-\Gamma_m) \xrightarrow{\psi_{-,m-1}^{\mu} \circ \psi_{+,\mu}^{m}} SHI(-M,-\Gamma_{m-1}) \rightarrow SHI(-M,-\widehat{\Gamma}_2) \rightarrow SHI(-M,-\widehat{\Gamma}_2)$$



Sketch of the proof of the large surgery formula

Step 1. Suppose m >> 0 and $\hat{\mu} = -m\mu + \lambda$. Then the slope of $\hat{\Gamma}_2$

$$-2\hat{\mu} + \hat{\lambda} = -2(-m\mu + \lambda) + (-\mu) = (2m - 1)\mu - 2\lambda$$

is large enough so that we can use 'middle Alexander gradings' of $SHI(-M, -\hat{\Gamma}_2)$ to recover the information of $I^{\sharp}(-S^3_{-m}(K), [s])$.

Step 2. The bypass exact triangle induces a long exact sequence

$$\rightarrow SHI(-M, -\Gamma_m) \xrightarrow{\psi_{-,m-1}^{\mu} \circ \psi_{+,\mu}^m} SHI(-M, -\Gamma_{m-1}) \rightarrow SHI(-M, -\widehat{\Gamma}_2) \rightarrow SHI(-M, -\widehat{\Gamma}_2)$$

Step 3. Use the octahedral axiom (TR 4) to prove isomorphisms $H(A_s) \xrightarrow{\text{TR4}} H(\text{Cone}(\psi^{\mu}_{-,m-1} \circ \psi^{m}_{+,\mu})) \xrightarrow{\text{Step2}} SHI(-M, -\widehat{\Gamma}_2, s') \xrightarrow{\text{Step1}} I^{\sharp}(-S^3_{-m}(K), [-s]).$

Further directions:

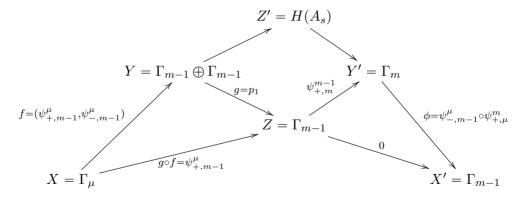
Construction	Heegaard Floer	Instanton	
Homology	$SFH, \widehat{HFK}, \widehat{HF}$	SHI, KHI, I^{\sharp}	
Large surgery formula	Oszváth-Szabó '04	Li-Y. '21	
Mapping cone formula	Oszváth-Szabó '08 '11	Li-Y. in preparation	
Bordered Floer homology	Lipshitz-Oszváth-Thurston '08	???	
Immersed curve invariants	Hanselman-Rasmussen- Watson '16 '18	???	

A large surgery formula for instanton Floer homology

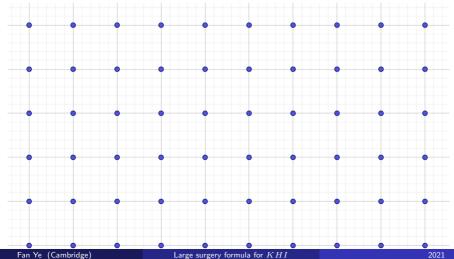
Thanks for your attention.

The octahedral axiom

Suppose X, Y, Z, X', Y', Z' are graded spaces. Then three long exact sequences about $f, g, g \circ f$ induce the fourth one about Z', Y', X'.



Note: Fukaya category is also a triangulated category so also satisfies the octahedral axiom.



Construction	Heegaard Floer	Instanton
Homology	$SFH, \widehat{HFK}, \widehat{HF}$	SHI, KHI, I^{\sharp}
Minus version	Reconstruction of HFK^- Etnyre-Vela-Vick-Zarev '17	<u>KHI</u> ⁻ Li '19

Theorem (Etnyre-Vela-Vick-Zarev '17)

The direct limit of the following system is isomorphic to $HFK^{-}(-S^{3}, K)$ $SFH(-M, -\Gamma_{n-1}) \xrightarrow{\psi_{-,n}^{n-1}} SFH(-M, -\Gamma_{n}) \xrightarrow{\psi_{-,n+1}^{n}} SFH(-M, -\Gamma_{n+1}) \xrightarrow{\psi_{-,n+2}^{n+1}}$ The maps $\{\psi_{+,n-1}^{n}\}$ induce the U-action on $HFK^{-}(-S^{3}, K)$.

Definition (Li '19)

Let $\underline{\mathrm{KHI}}^{-}(-S^{3}, K)$ be the direct limit of $SHI(-M, -\Gamma_{n-1}) \xrightarrow{\psi_{-,n}^{n-1}} SHI(-M, -\Gamma_{n}) \xrightarrow{\psi_{-,n+1}^{n}} SHI(-M, -\Gamma_{n+1}) \xrightarrow{\psi_{-,n+2}^{n+1}}$ Then the maps $\{\psi_{+,n-1}^{n}\}$ induce the U-action on $\underline{\mathrm{KHI}}^{-}(-S^{3}, K)$. Moreover, we can replace $\Gamma_{n-1}, \Gamma_{n}, \Gamma_{\mu}$ by $\widehat{\Gamma}_{n-1}, \widehat{\Gamma}_{n}, \widehat{\Gamma}_{\mu}$ to define $\underline{\mathrm{KHI}}^{-}(-S^{3}_{-m}(K), K_{-m})$ for the dual knot K_{-m} .

Analogous constructions in instanton and Heegaard Floer theory

Note that for
$$s \ll 0$$
, we have $HFK^{-}(-S^{3}, K, s) \cong \widehat{HF}(-S^{3})$ and $HFK^{-}(-S^{3}_{-m}(K), K_{-m}, s) \cong \widehat{HF}(-S^{3}_{-m}(K), [s-s_{0}])$ for some s_{0} .

Proposition (Li-Y. '20)

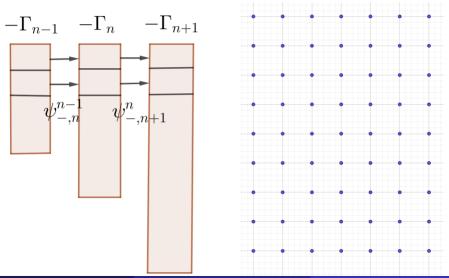
For $s << 0 \mbox{, we have}$

$$\bigoplus_{k=1}^{m} \underline{\mathrm{KHI}}^{-}(-S^{3}_{-m}(K), K_{-m}, s+k) \cong I^{\sharp}(-S^{3}_{-m}(K)).$$

Hence we can define $I^{\sharp}(-S^3_{-m}(K), [s+k])$ by $\underline{\mathrm{KHI}}^-(-S^3_{-m}(K), K_{-m}, s+k)$.

Since the direct system to define $\underline{\mathrm{KHI}}^-$ stabilizes for any fixed Alexander grading, we can also use 'middle gradings' of $SHI(-M, -\widehat{\Gamma}_n)$ for any n >> 0 to define the spin^c-like decomposition of $I^{\sharp}(-S^3_{-m}(K))$.

Diagram of the direct system



Fan Ye (Cambridge)

Large surgery formula for KHI

021 44 / 46

Construction	Heegaard Floer	Instanton	
Homology	$SFH, \widehat{HFK}, \widehat{HF}$	SHI, KHI, I^{\sharp}	
Minus version	Reconstruction of HFK^- Etnyre-Vela-Vick-Zarev '17	<u>KHI</u> ⁻ Li '19	
Decomposition	(torsion) spin ^{c} structures	along $H_1(M;\mathbb{Z})$, Li-Y. '21	
Euler characteristic	$\chi(SFH(M,\gamma)) = \tau(M,\gamma),$ Friedl-Juhász-Rasmussen '09, partial results by Oszváth-Szabó '04 '08	$\chi(SHI(M,\gamma)) = \tau(M,\gamma),$ Li-Y. 21, partial results by Lim '09, Kronheimer- Mrowka '10, Scaduto '15	

Theorem (Li-Y. 21)

For a balanced sutured manifold (M, γ) with $H = H_1(M; \mathbb{Z})$, we have a (possibly noncanoical) decomposition $SHI(M, \gamma) = \bigoplus_{h \in H} SHI(M, \gamma, h)$. Define the Euler characteristic

$$\chi(SHI(M,\gamma)) = \sum_{h \in H} \chi(SHI(M,\gamma,h)) \cdot h \in \mathbb{Z}[H]/\pm H.$$

Then we have $\chi(SHI(M,\gamma)) = \chi(SFH(M,\gamma)) = \tau(M,\gamma) \in \mathbb{Z}[H]/\pm H.$

Remark

The decomposition associated to the nontorsion part of H comes from the Alexander grading, and the torsion part comes from the 'middle gradings' of Γ_n for n>>0.